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1.0 Introduction
The following report is an examination of concepts for the utilization of three-

dimensional depth map information for the construction of features to be employed by
neural network based classifiers in the classification of underwater mines. The
evaluation of the discriminatory power of a subset of the identified three dimensional
features for mine detection/classification, in the context of actual or simulated data,
will be reported separately. The context that forms the basis for the current study
envisions the availability of coregistered side-scan sonar-derived intensity imagery
and three-dimensional depth map information at the same resolution. Hence. the
tnree-dimensional related features to be described are to be viewed as augmenting
features computed from side-scan sonar imagery.

The discussion that follows focuses separately in Sections 2 and 3 on the
construction of three-dimensional features that use low-resolution and high-resolution
depth map construction concepts, respectively, and associated with the use of
telesounding and swath-bathymetry techniques, respectively. Finally, Section 4
summarizes the study's conclusions.

2.0 Low-Resolution Three-Dimensional Depth Map Utilization Concepts
The discussion that follows will first review the telesounder concept for the

construction of depth maps. Next, the combined use of side-scan sonar data and
height map data in the estimation of underwater mine-size-related features will be
described.

The geometry underlying the telesounder depth map construction concept is
pictured in Figure 2-1. Two acoustic receivers mounted on a tow body are positioned
vertically with a separation A, and with the lower receiver also functioning as a
transmitter. It is assumed that the height of receiver #2 above some "reference"
bottom level, hR, is known, and that the sea-bottom terrain heigi-i above the
"reference" bottom at a ground range x, is denoted by hb(x). In addition, let ri(x),
rs2(x), denote the slant range from receivers #1 and #2, to the point (X,hb(X)),

respectively.

The telesounder concept (Ref. [1]) consists in forming the signal z(t) as

z(t) = i r(t) + r2 (tj (2-1)



RECEIVER #2

RECEIVER/ / SLANT-RANGES
TRANSMITTER

#1i TO RECEIVERS #1X#2

hR

Figure 2-1. Telesounder depth map construction geometry.

where rl(), r2() denote demodulated, complex signals associated with receivers #1
and #2, respectively. For the sake of simplicity, it is assumed here that reflections are

only received from the specific bottom patch at (x, hb(X)). Then, assuming a
transmitted complex signal of the form

s(t) = UT(t) ei -t (2-2)

UT (t) A JI 0 Ot <T
= 0 otherwise (2-3)

and assuming an idealized propagation process with no effect other than delay, it can
be shown that over the time interval where the two received pulses interact, that the
signal z(t) approximately includes a factor of the form f(0 (x)) where

t(O) os (1 iA sin (O))(= c 2 v2-'- (2-4)

and v denotes the velocity of propagation of sound. Now, letting
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A = k (2-5)

where X denotes the acoustic wavelength and noting that

= . (2-6)

it can be seen that

f(0) = Icos(nt k sin0)1 (2-7)

The conclusion to be obtained from the above discussion is that specific 0's
corresponding to the maxima of (2-7) will be associated with specific maxima in the
"interference" signal z(t). Hence, at those specific 0 values, the depth may be

deduced by the use of the apj roximate equation

htx) = hR - A - rs1 (x) sin 0(x) (2-8)

where rsl (x) is deduced from the time location of the appropriate z(o) maxima.

From (2-7) it can be shown that maxima of f(0) occur at discrete 0n's defined

by

On = sin-1f n = 0 ... k
k =(2-9)

For illustrative purposes, assuring that the bottom in Figure 2-1 were flat, then the

ground ranges associated with the f(0) maxima would be specified by

Xn = hR cot (0n) (2-10)

Table 2-1 lists On, Xn, (xn-1 - xn) values for a specific case in which

hR = 40m
k = 10 (2-11) / (2-12)

3



Table 2-1. 0 values and ground ranges associated with interference signal maxima.

n On Xn Xn-1Xn

0 0 __

1 0.10017 rad 397.98 m

2 0.20136 rad 195.96 m 202.02 m

3 0.3469 rad 127.19 m 68.77 m

4 0.41152 rad 91.65 m 35.54 m

5 0.52360 rad 69.28 m 22.37 m

6 0.64350 rad 53.33 m 15.95 m

7 0.77540 rad 40.81 m 12.52 m

8 0.92730 rad 29.99 m 10.82 m

9 1.1198 rad 19.37 m 10.62 m

10 /2 rad 0.0 m I 19.37 m

Hence, for the specific case considered in Table 2-1, over the first 200 m of ground
range, the separation between xn values varies from 10.62 m up to 68.77 m.

In (Ref. [2]), a variety of cylindrical-shaped U.S. mines are discussed, and their
dimensions are listed. The ranges of diameter and length dimensions are listed in
Table 2-2. The above discussion of the telesounder-based depth estimation technique

is sufficient to suggest that detailed three-dimensional surface and shape information
characterizing individual mines is not likely to be obtainable from gridded, telesounder-
derived depth maps. Hence, the discussion that follows suggests a way of employing
low-resolution, telesounder-derived depth map information to estimate mine-size-

related features.

Table 2-2. Cylindrical mine dimensions.

Minimum Maximum
Diameter 0.38 m 0.73 m

Length 1.8 m 4.1 m

When human sonar operators interpret side-scan sonar imagery, they look for
highlight regions with associated shadows. The concept suggested here is to make
use of side-scan sonar-derived slant-range and shadow extent information, combined
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with approximate bottom map information, h, (x), in order to estimate object diameter.

In Figures 2-2 and 2-3, the geometry of the object diameter calculation problem for the

case of an object on the bottom, or in the water column, respectively, is depicted. The

notations rs, / will denote the slant range to the object "highlight" center and the slant-

range extent of the shadow, respectively. In the case of Figure 2-3, g, denotes the

slant-range extent of the gap between the center of the "highlight" and the beginning

of the shadow. The notations xh, and {xs, xsu, xs/) denote ground ranges associated

with the "highlight" center and shadow edges, respectively. Finally, ho and hwc denote

the diameter of the object and the water column height, respectively.

SONAR
RECEIVER/

I .... 0 rs -- SLANT RANGE TO HIGHLIGHTTRANSMITTER

hR h £s= SLANT RANGE EXTENT

0 SHADOW

• X

Xh= GROUND xs GROUND
RANGE OF RANGE OF
HIGHLIGHT SHADOW EDGE

Figure 2-2. Geometry of object diameter calculation for case of object on the bottom.

SONAR 0__
RECEIVER/

TRANSMITTER

-rs = SLANT RANGE TO HIGHLIGHT

h ho-- g s = GAP BETWEEN HIGHLIGHT AND SHADOW

hR -= SLANT RANGE EXTENT OF SHADOW

Xh Xs. Xsu

Figure 2-3. Geometry of object diameter calculation for case of object in the
water column.
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The relationships that allow the calculation of ho, hwc are derived from equating

the ratios of corresponding sides of similar triangles. In the case of an object on the

bottom,

hR _ (ho + hb (Xh))
(rs +,/s + A') (Qs + Al (2-13)

where

A'= hb(Xs)

sin(0) (2-14)

and

0 co s- xh)
0cos-1(!s (2-15)

and therefore implying that

o- (s +A') hR - hb (Xh)(rs + /s + A') (2-16)

For an object in the water column depicted in Figure 2-3, two sets of similar triangles
yield the relations

hg (hw, + hb (Xh))
(rs + g& + A') (gs + A'e) (2-17)

hR (h, + hwC + hb (Xh))

(rs + gs + s + A'u) (gs +/s+A'u) (2-18)

where

A = hb(xsu)
sin (0u) (2-19)

A'e = hb (X,/)
, ,(2-20)
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and

gs +s!(2-21)

0,= cos-1 X9Xh) (2-22)

Relations (2-17) - (2-12) therefore imply that

(gs + A' hR - hb (Xh)
hc=(r.s + gs + A) (2-23)

h, (g + / + A'u) hR - h, - hb(Xh)ho=(r. + gs + /'S + A'u) (2-24)

The above discussion only addresses the geometric relationships that could

allow the construction of ho estimates, h. We next consider how some of the specific

quantities required in the above relations could be obtained in practice. By computing

an empirical histogram of side-scan sonar intensity image values over a given strip, it

is possible to determine thresholds te "th so that c percent of intensity values lie

below and above these respective values; then by employing t., "th, it is possible to

forin candidate shadow and highlight pixel sets. In each case, these sets will consist

of a finite number of connected components whose number can be reduced by a size

constraint, i.e., requiring each connected component to have over m pixels. Next, by

introducing furthcr geometric constrainis un the relative location of highlight blobs and

shadow blobs, a candidate set of pairs (highlight blob, shadow blob) can be

determined. Finally, by making use of our kitowledge of the sets (highlight blob,

shadow blob) and counting pixels in the cross-range direction corresponding to the

center of each highlight blob, and knowing the slant-range resolution per pixel, it

should be possible to determine rs, gs, A values.

The remaining quantities required to support h. calculation consist in the

ground ranges (xh, xs) or (xh, xsA Xsu), and corresponding bottom height values, hb(').

It is assumed here that approximate bottom height information, hb (o), is available at

the same resolution of the side-scan sonar imagery, through the application of some

gridding algorithm to discrete, scattered telesounder-derived height measurements. In

addition, note that ground-range information is assumed to be obtainable through the
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use of geometric corrections that make use of hb(*). For example, consider a reflector

at a height ha above the bottom and at a slant range rs,; then, the associated estimated

ground range, ir, can be viewed as the solution of the equation

[hR- ha hx)] 2 +x = r2  (2-25)

In the application of (2-25), ho = 0 for bottom points associated with shadow endpoints

identified in Figures 2-2 and 2-3. In the case of an object in the water column, as

depicted in Figure 2-3, ha could be set to zero initially, and the calculations repeated in

an iterated manner, using better estimates for ha as they are obtained.

The above discussion has identified a concept for using telesounder-derived,

low-resolution, three-dimensional depth map information to estimate object diameter,

h.. The quantities (r,, gs, /s) required in the above analysis might be expected to be

accurate to within a few slant-range resolution cells. The accuracy of ground range

and hb () values are coupled through (2-25). In addition, the accuracy of hb (°) values
will directly affect the accuracy of ho estimates through (2-14) and (2-16) or (2-19),

(2-20), (2-23), respectively. In turn, the accuracy of hb (°) values will depend on

* The accuracy of discrete telesounder-derived height measurements.

° The interpolation error implicit in the adopted depth map gridding algorithm.

In the final analysis, the utility of the above approach may be best evaluated through

attempting to implement it using actual data.

3.0 High-Resolution Three-Dimensional Depth Map Utilization Concepts

The discussion that follows will first review the swath-bathymetry concept for

constructing high-resolution depth maps, as outlined by Denbigh in Ref. '11. Based on

Denbigh's analysis, figures for the required signal-to-interference ratios in received

signals will be obtained in order to achieve desired depth accuracies. Next, in

Sections 3.1 and 3.2, feature calculations based on stochastic and deterministic depth

surface modeling approaches, respectively, will be considered.

The telesounder-based depth measurement concept was based on the addition
of received demodulated signals rl(.), r2(.) obtained from two receiver,% as depicted in

Figure 2-1. The factor in (2-4) that weights the magnitude of the sum signal z(t), is a

result of the phase difference between the two received signals. In the swath-

bathymetry depth measurement approach, the phase difference between the two

received signals is estimated directly from the individual signals and employed to
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allow depth measurements at each slant-range resolution cell. For the sake of
consistency with Denbigh's discussion and analysis, the geometry of the two
receivers and the associated depth calculation is depicted in Figure 3-1.

Hence, from Figure 3-1, the depth below receiver #1, hD(X), may be calculated

as

hD(x) = rsl(x) sin (13 + at(x)) (3-1)

where cz(x) is related to the phase difference between the two received signals, O(x),

by

¢(x) = 27 A sin ar(x)k (3-2)

In summary, O(x) and rsl(x) are estimated directly from the received demodulated
signals rl(.), r2(-); O(x) is then used to calculate ct(x) from (3-2); and then ct(x),
rsi(x) are used to form hD(X) fcom (3-1).

In Ref. [1], Denbigh investigates the question of determining the minimal

signal-to-interference ratio necessary to guarantee some desired fractional depth
accuracy. If AhD, AO denote depth and phase errors, respectively, then based on a
linearized analysis, Denbigh shows that

AhD = A0 1
hD(x) (2- A) cos (V(x) -13) tan (W(x)) (33)

Based on a phase estimation error analysis Denbigh obtains the following empirically
fitted result for the standard derivation AO associated with the phase estimation

error

GAO-2.5

p.4 3  (3-4)

where p denotes the signal-to-interference power ratio in the received signal. Hence,

if

IA 0 = GAO (3-5)
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Figure 3-1. Denbigh's swath bathymetry depth map construction geometry.

'P(x)

RECEIVER #2 ax

RECEIVER/!
TRANSMITTER #1 --

h0 (xh

Figure 3-1.
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then in order that

IhD (XA - (3-6)

we must require that

- 2.5 11/.43

r,(27 A) cos (xV(x) - 3) tan xV (x)(X ), (3-7)

We next apply (3-6) and (3-7) to a specific case. From Table 2-2, the minimal

diameter of a cylindrical-shaped mine was = 0.4 m, and hence, we let

AhD = (0.1) x (0.4m) = 0.04 m (3-8)

then if hD- hR, as defined by (2-11), then

i10-3  (3-9)

Letting

(3-10)0
O= 101(3-11)

(3-12)
and employing (3-7) and (3-9) results in a value for p of

(p = 40.7 (3-13)

The result (3-13) illustrates the stringent signal-to-interference ratios required in

order to obtain depth measurements sufficiently accurate to yield shape information
concerning cylindrical objects with diameters as small as = 0.4 m. Reference [11
discusses techniques for reducing signal-to-interference ratios. One approach is to
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average phase measurements over some collection of slant-range and along-track

side-scan sonar image cells in order to reduce oaO values. By averaging N phase

values, a reduction of 1/f- may be achieved in ao, and hence, for example, by letting

N = 100 (3-14)

the figure in (3-13) becomes

(p)dB 17.4 dB (3-15)

Unfori lately, averaging phase information results in a loss of slant-range and along-

track resolution in the resulting depth map. In the above case, to ensure a minimum of

5 resolution cells associated with a 0.4-m diameter cylindrical cross section requires a

s!ant-range resolution of 8 cm or 3.1 in.
In summary, the above discussion suggests that slant-range resolutions of 8

cm and signal-to-interference ratios of as high as 40.7 dB may be necessary to

adequately characterize cylindrically-shaped mines as small as 0.4 m in diameter.

3.1 Feature Calculation Based on Stochastic Depth Surface Modeling

The discussion that follows adopts the assumption that the two-dimensional
terrain bottom height, hb(x,y), pictured as the two-dimensional extension of the terrain

in Figure 3-1 and its discrete grid counterpart, hb(k,l), is modeled as a random field.

In this context, a bottom mine will appear as an "anomalous" patch of terrain whose

statistical characteristics are inconsistent or unpredictable relative to the surrounding

"background" terrain. Hence, the feature calculation approaches described here are

motivated by the literature on texture measures (Refs. [3], [4], [5]) as well as

random field-based approaches to image processing (Ref. [6]).

The statistics of a stationary random field are characterized in the spatial

domain by its mean value and correlation function, or in the spectral domain by its

power spectral density function. Hence, typical choices for features are related to

empirical correlation function or power spectral densities. Empirical autocorrelation

function values, c (A', Ay), computed based on field values hb(k, 1) associated with a

specified two-dimensional, processing "estimation" window, RE, are defined as

follows.

12



Let empirical mean and standard deviation estimates, m, 2 be defined by

Mf _1 hb (k,l1)

IRd (k.1) E RB (3-16)

-2 =L I (hb(k, 1)-i-my

IRd (k, 1) e RE (3-17)

where IRd denotes the number of elements in RE, then

,(Ax, AY) =- A  Y 2 (hb(k + Ax, 1 + Ay) - im)(hb(k, 1) - m-)
N(Ax, AA),, 2 I +A,1)E RR

(3-18)

where N(Ax, Ay) denotes the number of terms in the summation defined by (3-18). A

vector of two-dimensional correlation coefficient features can be obtained by varying
(Ax, Ay) E Rn), where R(n) denotes a region in the 2D correlation plane of the form

depicted in Figure 3-2. Due to the symmetry of the autocorrelation function through
the origin, knowledge of c(A x, Ay) for (A x, A y) c Rn) implies knowledge of

autocorrelation function estimates over the region [-n, n] x [-n, n].

Next, the construction of power spectral density related features is described.
Assuming for simplicity that RE = [0, NE-1] x [0, NE -1], the discrete Fourier

transform Hb(u,v) associated with the zero-mean field, hb( ° ,") -m is defined by

NF -1I

Hb(uv) = - E [hb(k, 1)'ii]e-i2r(ku+Iv) u,v,E[0, NE-11
Ni k,1=0 (3-19)

Standard normalized texture features based on ring and wedge-shaped samples of the

discrete Fourier power spectrum are defined as follows

rI, r2 AHb (1,

rl < u2 + v2 <r

u, v e [0, NE -1]1 (3-20)

13
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(O,n)

* 0

x * 0x

(-n,O) (n,O)

Figure 3-2. Rc region in 2D correlation plane.



A P b(u, v1

J0 :i tan-' (v/u)<02\

1 u, v E[0, NE -1 1 (3-21)

By choosing a discrete collection of (r t, r2), (01, 02) pairs, a vector of power spectral

density related features may be defined.

The features defined by (3-18), (3-20) and (3-21), together with &2, use

nonparametric techniques to characterize the statistics in the spatial and spectral

domains, respectively, of the zero mean random field determined by [hb (', ) - m]. An

alternative approach for constructing statistical features would be to adopt the

assumption that hb(, ) can be modeled by a parametric, 2D autoregressive (ar)

model of the form

hb (k, 1) - cm hb (k + n, I + m) = Wk. I + Lw

(.m) s(na) (3-22)

where S(na) denotes a 2D region pictured in Figure 3-3, Wk1 denotes a zero-mean

spatially independent random field with variance

E (w.I }= y2 (3-23)

and gw denotes a nonzero mean component to the prediction error process defined by

[gw + Wkl. In the above context, estimated 2D model parameters

2&w, Rnlm (n,m) ) could be identified as features that determine the spatial or

spectral properties of the zero-mean random field [hip, )-m]. Estimates of {CTn.m, 9.,w)

are determined through the solution of a linear least-squares problem defined by

optimizing (ts, where

4 'LS = (hb(k,l) -  tn. hb(k+nl+m)-gwY

(k1)r RE
so that (k + n, I + M) E RE

V (n, m)e S(na) (3-24)

14
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Figure 3-3. Support, S (na), of 2D autoregressive model.



If mLS denotes the number of terms in the summation defined by, then

-2 1 L SI

(3-25)

Refs. [7] and [8] discuss solution techniques for linear least-squares
problems. The performance functional DLS can be expressed

= Ax-b11 2  (3-26)

for an appropriately defined mLS x nLS - dimensional matrix, A, mLS - dimensional

vector b, and nLs - dimensional vector x defined as
A (anm (n, m) r= SO)_

9 ( a m )(3-27)

when nLS is expressed as

nis = 2 n- + 2na + 1 (3-28)

The most computationally inexpensive technique for optimizing 4DLs involves the

solution of the normal equations

[A' A] x = A' b (3-29)

and requires a total of

(n&/2) [rrs + (nLs3)] (3-30)

floating-point operations using the Cholesky decomposition to solve (3-29), by
factorizing A'A into a product of upper and lower triangular factors, and solving a
sequence of triangular systems.

While the estimated ar model parameters an, , O2) can be employed as

features, an additional option employed in random field-based approaches to object

15



detection (Ref. [6]) involves the construction of normalized, prediction error residuals

defined by

rk.l1= Fhb(k,1 )- &nmhb(k+n,l+m)-4w l/&w
L (n.m)6S( nl) (3-31)

When the random field model defined by (3-22) holds, the normalized prediction error

residuals defined by (3-31) will approximately represent a spatially independent
random field. In addition, large rk,1 values will be representative of areas of thz field

which are atypical. The above discussion suggests that correlation coefficient, and
mean square power estimates constructed using rk.1 values over processing sub-

windows within RE, will be useful features.

The above described, stochastic model based approaches to feature

"or .rcto were based on viewing hb(o, o) as a continuous valued random field. The

next texture measure related features described here are defined using grey-level
images, i.e., images that assume a discrete set of values. Such grey-level images

arise naturally in an imaging setting, but may be formed by quantizing a continuous
valued image into a discrete set of ranges, or bins. It is assumed here that the image

values [hb (k, 1) - m] are mapped into the values 0 .. .nG-1 by an unspecified

quantization function GQ[°], in order to obtain the discrete field, f(k, 1), i.e.

f(k, l)- GQ[hb(k, l)- iii] (3-32)

The first grey-level statistic-related texture measures to be defined are

computed from empirical joint grey-level distribution estimates. Let A denote a two-

dimensional discrete shift vector defined by

A = (Ax, AY) (3-33)

and let

PA (i, j)__ Pr ( (f(k, 1) = i) & (f(k + Ax, I + Ay) = J) (3-34)

VA (i,j) = [PA (i,j) + PA (j, i)]/2 (3-35)
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If 9A (i, j) denotes an empirically computed estimate of XVe& (i, j), then Ref. [3] defines
the following spatial grey-level dependence (SGLD) related features:

(1) Energy:
EA (94 (i,j))2  

(3-36)

(2) Entropy: HA A (i, j)In [ (i, j)]  (-7

(3) Correlation:

CA _ [(i - i)(j - y)A(i,j)/(x &y)j (3-38)

(4) Local Homogeneity:

1 +(i) 2  (3-39)

(5) Inertia:

I'& (i-j)2jA(i,j) (3-40)

with {9x, Py, 6x, &y} defined by
^A

9~x = I V A (i, j) (-1S 6)(3-41)

^= Y, ja (i,j)

Oy gy V (3-42)

The features (EA, HA, CA, LA, IA) should be computed for a collection of 2D shifts over
a region of the form defined by Figure 3-2, due to the symmetry of gIA(*,*) through the
origin in A.
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A second set of grey-level statistic-related texture measures are computed

from the empirical distributions of the absolute value of grey-level differences. Let

%la(i) be defined by

TlA(i) = Pr(k(k,e)-f(k+A,e+Ay = A i (3-45)

and let iJA (i) denote a corresponding empirical estimate. Then Ref. [3] defines the

following grey-level difference (GLD)-related features:

(1) Contrast: CON,& i2 - a (i) (-6

(2) Angular Second Moment:

ASMA X (ia (i))2  (3-47)

(3) Entropy:

ENTA TjA W (i)lniA (i)] (3-48)

(4) Mean:

MEANA iA W(i) (3-49)

(5) Inverse Difference Moment:

IDMA__ (i2 + 1) (3-50)

Note from the definition of rqA(i) that the features computed will be dependent on the

sign of the direction, A, and hence {CONA, ASMA, ENTA, MEANA, IDMA) would
typically be computed for a collection of A's over a neighborhood of the origin, from

which (0, 0) was excluded.

A third and final set of grey-level statistic-related texture measures are

computed by counting grey-level "runs" of various lengths. A "run" of grey levels
consists in a collection of adjacent pixels, along some direction 0, having the same

grey level value. Let 40 (i, j) denote the number of runs of length j, associated with
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direction 0 and grey level value i, contained within the processing window RE. Then
Ref. [3] defines the following grey-level run length (GLRL)-related features:

(1) Short-Run Emphasis:

TR (3-51)

(2) Long-Run Emphasis:
RF2,0 =4 2 ij

TR j(3-52)

(3) Grey-Level Distribution:
RF3.o 4-LR ifj Ii, J)}

TR 1(3-53)

(4) Run-Length Distribution:

RF4,o 1 ' w+(ij)R TR j (3-54)

(5) Run Percentages:

RF5. 0 4 - 1 -  40 6(ij)
IRd (3-55)

where

TR 6(i,j) (3-56)

The features (RFI, 0 , RF2,0 RF 3.0. RF4,0 RF5.0} are typically computed for directions 0

- 0, 45, 90', 135.
Research in Refs. [3], [4] has investigated the use of SGLD, GLD, GLRL

features in discriminating between textures in aerial terrain photo and synthetic fields
generated using Markov chain models. These results suggest that SGLD and GLD-
derived features were more effective in separating different texture classes than

GLRL features. Hence, of the giey-level texture measures discussed above, the

SGLD and GLD features may be the most promising.
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The above discussion has centered on traditional spatial and spectral texture

measures. Recent mathematical research under the heading of fractal geometry has

resulted in new geometric concepts for describing and quantifying the degree of

irregularity of natural objects. Hence, an additional feature of interest may be

estimates of the fractal dimension of the 3D terrain surface over a processing window,

RE. Fractal dimension features have already been successfully employed in Ref. [9] to

discriminate natural from man-made objects in images. The brief discussion that

follows outlines the use of Mandelbrot measures in fractal dimension estimation as

described in Ref. [101. Let a 3D point set vk.I be defined by

vk. I Yk. I (k, 1) E RE
hb (k,l) (3-57)

Then, by centering spheres of radius, L, at each of the Vk and counting the number of

3D terrain points that are enclosed, the "Mandelbrot" probability distribution P(m,L)

may be estimated, where

P(m, L) A the probability that a sphere of diameter L encloses m-points (3-58)

Now, by computing M(L) defined as

M(L)4X mP(m,L) (3-59)

and repeating the above procedure for a sequence of L values, the fractal dimension

estimate may be obtained as the slope, D, of the graph of ln(M(L)) versus ln(L), i.e.,

through solving a linear least-squares problem involving the minimization of

[In (M(L)) - D In (L] 2

(3-60)

Next, the present subsection on stochastic depth surface model-based feature

construction techniques is concluded by sketching the potential use of wavelet

transform-based features. Recall that through (3-9) - (3-21), 2D Fourier spectra

related features were defined. The basis functions associated with Fourier

expansions, i.e., complex exponentials, are localized in their frequency content, but not
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in terms of their spatial duration. Wavelet signal representation techniques (see Ref.

[11]) allow for expansion in terms of basis functions that are both orthogonal and

localized in terms of both spatial duration and frequency content.

In the discussion that follows, the wavelet signal representation of a 2D

continuous function g(x,y) is briefly described, in order to motivate the construction of

wavelet transform related features. Two effectively finite duration ID functions that

play a key role in wavelet based signal representatives are termed the "scaling

function", 0(-), and "wavelet function", V(o). The following orthonormal 2D functions

are defined, and associated with 2D basis functions underlying the wavelet signal

representation:

H°',,) (x, y) = 2J (2J(x" 2i n)) ((2J(y- 2-J m)) (3-61)

H 'Q) (x, y) = 2i (2i(x- 2i n)) xV( (2i(y- 2-i m)) (3-62)

H$2"j )(x, y) = 2J xc2J(x - 2i n))0 ((2J(y -2J m)) (3-63)

H'.Om)(x, y) = 2i x(2i (x - 2-J n)) xv ( (2J (y - 2-i m)) (3-64)

The index "j" in the above notation denotes the j-th resolution, while the indices (n, m)

serve to determine the regions over which the basis functions are effectively non-zero.

Using the notations H(0 ,J) (°, H(1,J) {'), H( 2.J) {}, H(3'J) {} to denote projection

operators mapping a given function g(-, *) onto the linear spaces spanned by the

associated orthonormal basis functions, then the key practical result underlying the

use of wavelet expansions can be expressed as

I

H(° = (g) (J)g) + [H0'i)(g} +H(2j)g)+ H(3J) {g)]
j= J (3-65)

Due to the special properties of 0(-), W(-), each term on the right-hand side of (3-65)

is mutually orthogonal and is itself represented in terms of orthogonal basis functions.
The H(0.-J) {g) term represents a coarse, low frequency approximation to the function,
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while the H(1 .J) {g), H(2 .J) {g}, H(3 ,J) {g) terms represent higher spatial frequency

effects that appear at progressively finer resolutions, and correspond to effects

resembling vertical "edges," horizontal "edges," and "comers," respectively.

When the above 2D signal representation framework is applied to the

representation of discrete images as in Refs. [11] and [12], the coefficients associated

with the expansion of each of the projections on either side of (3-65) can be associated

with "images." These coefficients can then be used as features for the detection of
"anomalous" objects, which appear at some specified resolution. Hence, one feature

of potential interest would be ms power estimates associated with sub-windows of

the "images" associated with each of the H(1,J) (.), H(2,J) {.), H(3.J) to) terms.

3.2 Feature Calculation Based on Deterministic Depth Surface Modeling

The preceding discussion adopted a statistical perspective on the

representation of the terrain bottom height hb(X,y), and the construction of features for

mine classification. The discussion that follows will adopt a deterministic surface

model-based perspective, similar to that adopted in the 3D object recognition and

machine/computer vision literature. A comprehensive review of 3D object recognition

approaches by Besl and Jain (Ref. [13]) suggests that object recognition is best

solved by recognizing the individual surface regions associated with the depth map

functions for specific object types. Hence, the structure of 3D object recognition

algorithms often consists of

(1) The fitting of surface representations and extraction of geometric

features.
(2) The construction of a symbolic representation of the collection of

surfaces defining a depth map, using the features extracted in (1).

(3) The "matching" of derived symbolic representations against analogous

symbolic representations computed for specific object types.

Our discussion will focus on step (1), with the view that the geometric features

identified will become inputs to neural-network-based classifiers for mine recognition.

The development that follows will first motivate the selection of curvature and

surface normal-related features by appealing to the differential geometry of surfaces.

Next, specific generic surface fitting/representation approaches will be reviewed that

can s ipport the calculation of the identified geometric features. Then, noting that the

above described approaches employ general surface representation techniques, while

mines frequently have spherical or cylindrical surfaces; we will finally consider the use
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of specialized quadric surface fitting techniques for the calculation of shape-related

features.

We next define some concepts and notation from the differential geometry of

surfaces (Ref. [14]). In general, a parametric 3D surface is represented by a vector

valued function of two variables, f(u), where(f1(U)f(u)=a f2(u)

f3(u) (3-66)

with fl(u), f2(u), f3(u) representing x, y, z coordinate functions, respectively and

u- ul) u2 (3-67)

In the case of a Monge or graph surface, (3-66) is specialized so that

fl (U) = u 1  (3-68)

f2 (u) = u2 (3-69)

If the differential of a vector valued mapping, f(u), denoted by df, is defined as

df 4 fu, dul + fu2 du2  (3-70)

then the first and second fundamental forms are defined by

I (u, du)4 -df • df = du'G du (3-71)

II (u, du) 4 -df • dn = du' B du (3-72)

where n denotes the surface normal field defined by

_fu, x fu,
Iu) Ifu x fu1 (3-73)
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and G, B denote first and second fundamental form matrices that are functions of u.
The normal curvature, kn, denotes the projection onto the normal n(u) of the curvature

vector associated with a curve on the 3D surface, passing through f(u), and is
expressed by

n= (u, du)
I (u, du) (3-74)

The extreme values associated with kn, denoted by k1 , k2 , are termed principal

curvatures. The Gaussian and mean curvatures, K and H, respectively, are defined by

K = kl k2  (3-75)

H I l(kI + k2)
H ((3-76)

and can in addition be expressed as functions of first and second fundamental form

matrices as

K = det[G-1 B] (3-77)

2 1(3-78)

Besl and Jain in Ref. [15] summarize the properties that make H,K attractive
features for use in a 3D object recognition context:

(1) H and K are invariant to changes of variables in the u parameters, with
the only exception that sign changes in H may occur if the sense of the

surface normal n(u) changes.
(2) H and K are invariant to translations and rotations of the 3D surface
(3) The signs of H, K indicate the local shape of the surface.

In Refs. [15] and [16] Besl and Jain indicate the following eightfold classification of
local surface shape based on the signs of H, K:

(1) H < O, K > 0 peaked surface

(2) H < 0, K = 0 - ridge surface
(3) H < 0, K < 0 - saddle ridge surface

(4) H = 0, K=0 - flat surface
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(5) H = 0, K < 0 - minimal surface

(6) H > 0, K < 0 -- saddle valley surface

(7) H > 0, K = 0 valley surface

(8) H > 0, K > 0 -- pit surface
The eight categories mentioned above are depicted in Figure 3-4.

Yang and Kak in Ref. [17] advocate the use of H,K histograms in order to
discriminate between 3D objects. These authors distinguish between the following

six categories of curvature histograms:

(1) Positive only with peak: curvature values nearly all positive with a well-

defined peak value in the curvature histogram.
(2) Positive only without peak: curvature is positive, but continuously

varying, so that no well-defined peak occurs in the curvature histogram.

(3) Negative only with peak: same as (1) except involving negative values.
(4) Negative only without peak: same as (2) except involving negative

values.
(5) Peak at zero: curvature histogram has a single peak at the bin

corresponding to zero curvature.

(6) Positive and negative without peak: corresponds to a surface with

continuously varying curvature.
As specific examples, a spherical object has a K-histogram in category (1), and an H-
histogram in category (3), while a cylindrical object has a K-histogram in category (5)
and an H-histogram in category (3).

While specific approaches for calculating H, K values will be made explicit in
the discussion that follows, the above background is sufficient to suggest the following

curvature related features for use in neural network based mine classification. It is
assumed here that the quantities designated below are obtained by the calculation of
H(u), K(u), values over a discrete collection of u values, which are associated with a
discrete grid defined over a specified processing, or estimation window, RE. The

proposed list of curvature related features includes

(1) Minimum and maximum H, K values.
(2) Average H, K values.

(3) The variances of H, K values.

(4) H, K histogram values.

Next, more explicit results than (3-75) - (3-78), obtained from Ref. [16], are
stated for the calculation of H, K. If ai i=l, 2, 3 is defined by
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Figure 3-4. Local surface categories based on H,K signs.
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al A [fRu x fu ° u (3-79)

a2 [f.l X Qu- f.xn (3-80)

a3 A [uIf X Qu- f11 2u (3-81)

then

H = al IIfuj F- 2 a2[fu fu + a3 I fulI12

2 i Ifu ix fjP (3-82)

K = (ala3-a2
2)

I I f u X (3-83)

The above general results simplify in the case of a Monge or graph surface ((3-68) and

(3-69)) to

3uu I+ f3,u2u2+ f3'u u 2(1 I + f3,I2u2+.,- , u2tn f., IU 2 (3-84)

K - u f3, U2U2-fi, UU)

(I+ fi, U, + fiu1  (3-85)

The important conclusion to be obtained from (3-82) - (3-85) is that the calculation of
H, K requires the calculation of second order derivatives of the coordinate functions,

fi(u).
The above discussion has centered on the definition of curvature-related

quantities for use as features in 3D object recognition. Other research in the 3D
object recognition literature has considered the use of surface normal orientation

related information. The unit vector surface normal field, n(u), defined by (3-73) can

be characterized by its associated polar and azimuthal spherical coordinates, denoted
here by 0(u), 0(u), respectively. Sethi and Jayaramamurthy (Ref. [18]), in the case of
graph or Monge surfaces, define characteristic contains as curves Cp satisfying
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Cp ={u :n(u) -nref = p) (3-86)

The vector nref denotes a fixed, reference direction unit vector. As specific examples,

note that the Cp contours associated with a sphere are a family of circles or ellipses,

while for a cylinder, the analogous contours are a collection of parallel lines. A Hough

transform based approach is suggested in Ref. [18] for the characterization of Cp

contours. Letting the function g,,9 (u) be defined as

gr, (u) A r - ul cos (P - u2 sin (p (3-87)

letting (ri, 9pj) denote a discrete collection of (r, p) values covering alternative lines of

practical interest, then the Hough Transform "image" H(ri, (pj) is determined (see Ref.

[19]) by initializing H (ri, (pj) to zero and then incrementing by 1 for each discrete uo r

Cp satisfying

gq(U1 < , (3-88)

where e is selected based on the resolution of the (r,(p) discretization. In the above

context, features of potential use as inputs to a neural-network classifier include
(1) H (ri, 9pj) "image" values.

(2) (r, (p) moments computed viewing H (ri, pj) as a discrete mass

distribution, e.g., such as the (r, (p) center of mass, and second

moments of (r, p) computed about the r, (p mass centers.

While the technique of Sethi and Jayaramamurthy (Ref. [18]) uses surface

normal information to identify the type of characteristic contours Cp in the (u, U2)

plane, and hence to identify object type, an approach proposed by Herbert and Pence in

Ref. [20] suggests the direct use of the Hough transform approach on calculated

surface normal components in order to test for relationships satisfied for alternative

surface types. As specific examples, consider the following Hough transform function,
(nn 2 n3 ) )(n1 n2, n3) which play the same role as gr, P(u) in (3-87), in

defining Hough transform "images" H(P4t$*, oJ*) H(C 10 * , ej*)

gP*. (n1, n2, n3) = sine* cos 0* nI + sine0* sin 0* n2 + cos* n3 - 1 (3-89)

g(CYL)_ * O** O**

0 0"(ni, n2, n3) = sin 0 cos 0* n, + sin 0 sin 0* n2 + cos 0 n3 - 1 (3-90)
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Note, that (3-89) and (3-90) specify quantities that are exactly zero for surface normal

components associated with planar and cylindrical surfaces, respectively, when (0*,

0*) denotes the spherical coordinates of the planar surface normal or the axis of the

cylinder, respectively. The above discussion suggests that Hough transform-based
features, analogous to those described in the case of characteristic contours, Cp , but

based on generalized Hough transforms computed using (3-89) and (3-90), may be of

interest.

The approaches presented in Refs. [18] and [20] make use of n(u) vector field

alone. Horn (Refs. [21] and [22]) suggests the use of derived image termed the
"extended Gaussian image" (EGI), which combines both surface normal and

curvature-related information. In the case of convex objects, there exists a unique

correspondence between surface points and associated surface normal directions.

Hence, for a convex object, the continuous EGI, which may be viewed as a surface

mass density defined on the unit sphere, G(CONVX e e) is defined by

G(CONV (o (u), 0(u)) = I
K~u) (3-91)

For nonconvex objects, with a finite or countable number of points having the same

orientation, the continuous EGI is defined by

G(¢,0)= 1
IK (uil

0i: 0(,) = 4 e) = o) (3-92)

For objects with an uncountable number or points having the same orientation, the

continuous EGI involves impulses defined on the surface of the unit sphere (see Ref.

[21]) for a precise definition in this case). For our purposes, (3-92) is an adequate

definition since our main interest is in a discrete version of the EGI, termed the DEGI.

The discrete EGI, or DEGI, is determined by
• A discrete set of cells ap p = 1 ... Ms defined on the unit sphere.

* A discrete set of rectangular cells in the u parameter space, with

associated center up, and areas Ag = 1. . . Mp.

so that
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{(0 (u0, 0 (us) E ap) (3-93)

Alternatively, since the Gaussian curvature can be formulated in terms of area-related
quantities, Gap can also be approximated as

G = A ;GlI(uDJG22 u.-G12 (u ) (3-94)

where G (u) denotes the first fundamental form matrix defined through (3-71). Note,

that for the case of a Monge or graph surface

VGni (ug) G22 (u) - G12 (u) = 1 + fj, ul + f, u2 (3-95)

The use of the DEGI in a 3D object recognition context is complicated by the
fact that, in general, it is viewpoint-dependent, and that typically only the visible
portion of a surface is available for its computation. One way to derive features from
the DEGI whose viewpoint dependence is lessened is to regard Gap as defining a

discrete mass distribution on the unit sphere and to compute an appropriate center of
mass, with moments defined based on expected powers of spherical distances from
the mass center. It is assumed that Gap is viewed as a point mass associated with an

appropriately selected center (Op, Op) of the spherical cell up. Then, the spherical

coordinates of a center of mass, (0,,, 0,m) can be defined as

0cm 
=

G, (3-96)

0CM = Op Gp

Gov (3-97)

Hence, if d, (01, ()1, 02, 02) denotes the great circle arclength between the two points

(0i1, 00, (02, 02) then expected powers of the spherical distance from the mass center

(0cm, 0cm) can be defined by
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X d (O 0 p, cm, 0cm)

Y, Gp (3-98)

To conclude our discussion of the EGI and DEGI, moment features like that defined by

(3-98) constitute an additional class of potential inputs for neural-network-based mine

classifiers.

The above discussion, motivated by ideas from differential geometry and the

3D object recognition literature, has centered on the identification of curvature and

surface normal-related features for use in mine classification. The discussion that

follows will focus on a review of selected techniques for the fitting of surface
representations in order to support the calculation of the above-described features.

The majority of the various surface representation techniques available from the

approximation theory and computer graphics literature divide into interpolatory

approaches (denoted here by the abbreviation IA) in which the approximant function

exactly reproduces the data at specified points, and least-squares-based approaches

(denoted here by the abbreviation LSA), in which the approximant function solves a
least squares optimization problem. In addition, techniques can be categorized based

on their ability or inability to handle nonuniformly spaced data (denoted here by the

abbreviations NUDA, UDA, respectively). The selected approaches described here,
together with their categorizations based on the above defined abbreviations are as

follows:

(1) Regression using discrete orthogonal polynomials (Ref. [23]) (LSA,

UDA).
(2) Moving weighted least-squares-based surface representation (Ref.

[24]) (LSA or IA, NUDA),

(3) Polynomial-spline-based surface representation (Ref. [24]) (IA,

NUDA).

(4) Smoothing-spline-based surface representation (Refs. [25] and [26])

(LSA, NUDA).

Before reviewing surface representation approaches (1) - (4) defined above, it

is worth noting that in the application of any of the techniques, fundamental decisions

must be made concerning:

(i) The manner in which the 3D surface will be parameterized, i.e., through

a general parametric representation for each coordinate function like
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that defined in (3-66), or through the more specialized Monge surface

representation implied by (3-68) and (3-69).

(ii) The manner in which surface representations will be employed to

calculate curvature and surface normal related features.

In the case of (i), the use of the more general parametric surface representation
implies the need to solve a surface representation problem for each coordinate
function. Approaches for constructing a discrete set of 2D parameter vectors uij to be

associated with a discrete collection of 3D vector values fij are described in Refs. [27]

and [28]. In the case of (ii), there exist two alternative approaches:

(a) 3D vector values fij over some collection of processing windows, each

denoted by RE, can be used to construct a single surface representation

over each RE, which can then be differentiated and employed to obtain

curvature and surface normal related features at every enclosed pixel.

(b) By implicitly solving surface representation problems over windows,

RE,iJ centered about each pixel, 2D convolutional filters may be

determined for the explicit calculation of first and second derivative

information necessary to support calculation of curvature and surface

normal-related features. (This approach is only an option when the

distribution of data points is uniform in the parameter space.)
The case (a) above enjoys the philosophical advantage of corresponding to the

representation of a single well-defined approximating surface for each processing

window, RE. However, the speed with which convolutional filtering operations may be

performed suggests a substantial computational advantage to (b).

The above discussion suggests that the adoption of a surface modeling

approach based on a Monge representation and a feature calculation approach based

on case (b) are favored from a computational standpoint. Hence, most research

reported in the 3D object recognition literature makes these assumptions. However,

the work reported in Ref. [27] has made use of the more general 3D surface

parameterization, as well as a feature calculation approach based on case (a).

The discussion that follows will review surface representation approaches (1) -
(4) mentioned above in the context of approximating a 2D function F(x,y), for which
discrete values Fij are available on the discrete grid (xi, yj ) i = 1. . Nx, j = 1 ... Ny. In

the discussion of approach (1), regression using discrete orthogonal polynomials, to
I; consistent with Refs. [231 and [16], it is assumed that the (xi. yj) grid is uniform in

both coordinates, and that
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N = 2M,+ I
NY= 2My + 1 (3-99)

(3-100)

Given (3-99) and (3-100), it is possible to define the shifted discrete coordinate

parameters

Jk = -(M, + 1)

/=j-(M 4. 1) (3-101)

(3-102)

and the discrete data field Gk,/defined by

Gk.,. = Fk+(M+I),,+(My+l)k -M. .M

/ =-MY. y (3-103)

Hence, the (k, t) = (0, 0) point corresponds to the center of the originally defined
discrete data field, Fij.

Now, let Oxq ('), Or (-) q = 0 ... mx, r = 0 ... my denote orthogonal polynomials
associated with x, y coordinate directions, i.e.

M,

I Oxqj (U) xq2 (U) = Nxql 'qj, q2
u =-M. (3-104)

M,

I Oyri (v) yr2 (v) Nyr 8 r. r2
v=-My (3-105)

Then the least-squares approximant Gk., for the Gk,, field, when represented in terms

of the basis [x 4 )Oyr(')] functions, can be expressed as

Gk./ aqr Oxq(k)yr(4
q, r (3-106)

where
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Gk,/xq (k)COyr (4
I',,

aq.,r = (Nxq" Nyr) (3-107)

If (k, /) are now viewed as continuous parameters, (3-106) can be differentiated to

provide expressions for first and second derivatives. In particular, by using the
resulting expression for k = 0, /= 0, we obtain convolutional filter forms for calculating
first and second derivatives mentioned in the above discussion. Ref [16] provides

specific examples of Oxq('), 4yr() for the case of discrete orthogonal polynomials that

are no higher than second order, i.e., at most quadratic.
The orthogonal polynomial regression based surface representation technique

described above is very attractive in a computational sense, but is unable to handle
the problem of scattered, unevenly distributed data. The moving weighted least-

squares-based surface representation approach described next can handle
nonuniformly distributed data, but at the price of requiring the solution to a general
linear least-squares problem, and in some cases demanding the solution of a new
least-squares problem for each point at which an approximant value is desired. Let z

denote a vector representing a 2D point, and let b(z) denote a Q-dimensional vector
valued function whose components correspond to the 2D basis functions to be
employed in the formulation of the least-squares problem, e.g., xPi xP2 for 0 PI + P2
<2 specifies a case for which Q = 7. In addition, let zm m = 1 ... NxNy denote the

collection of 2D (xi, yj) pairs and F denote the corresponding vector of associated
function values made up of Fij's. Then defining the matrices

B (b(zl) " b(ZN.Ny)) (3-108)

(w a z- Z.1, 1)
W()6....

w(I z-ZN.NI) (3-109)

where w(-) is some non-negative weighting function, the approximant function at z,

F (z) is expressed as

F (z) = b(z)-(z) (3-110)
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where - (z) is the Q vector solution of the linear least-squares optimization problem

expressed by

inf T1/2(z) [B'a - F] (3-111)

a

Recall that the solution of a generic linear least-squares optimization problem was
discussed before in the context of 2D autoregressive model fitting, through (3-26) and
(3-29). The type of surface approximant obtained in (3-110) varies with the selection
of the weighting function w(o). In the case when w(o) is a non-negative constant, the
approximant represents an ordinary least-squares surface fit, and i (z) is not
dependent on z. In the case when w(-) is a non-negative function, bounded at 0, e.g.,

w() = ci e-42/2 (3-112)

then the approximant represents a least-squares fit that weights data points according
to their distance from the point of interest. In the case when w(°) is a non-negative
function unbounded at 0, e.g.,

w(4) = [c, e'{4 2/c2)/ 2 (3-113)

the approximant interpolates at the data point and represents a least-squares fit off
the data points. Finally, it should be noted that the smoothness properties of the
fitted surface F (z) varies with the smoothness properties of the bi (z)'s and the

choice of w(.). In the case when the bi(z)'s are 2D polynomials and w( ) = 1/42k for k
> 1, F (z) has been shown to be infinitely continuously differentiable.

In general, the weighted moving least-squares-based surface representation
approach described above requires the solution of a new least-squares problem for
each new data point z at which F (z) is desired. In addition, the calculation of first and
second spatial derivatives of F (z) requires the calculation of corresponding
derivatives of a(z), which in general must be calculated through the solution of linear
systems of equations as discussed in Ref. 124].

Approach (2) as described above may be useful as a data gridding approach,
i.e., an approach for obtaining a uniformly distributed data set from an irregular or
scattered data set. In this case, the application of approach (2) might be followed by a
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more computationally attractive interpolatory technique for the calculation of required

surface derivatives.
Surface representation approaches (1) and (2) described above adopted a

least-squares approximation formulation in a discrete and continuous space setting,
respectively. The use of a least-squares approximation approach is motivated by the

practical problem of fitting surfaces to noisy data. In situations where data noise

effects are small, or the data has been smoothed (see Ref. [29]) or gridded using a
least-squares approach like that described in approach (2) above, the use of an

interpolatory approach like the polynomial spline surface representation approach (3)

may be justified. In the discussion that follows, two approaches to the fitting of cubic

polynomial splines are described, based on the use of cardinal splines and B-splines,

respectively.

Both the cardinal spline and B-spline approaches are best introduced first in a

ID curve representation setting. The cardinal spline approach is based on
representing a function of x, with associated discrete function values fxi i = 1 ... N,

by an approximant of the form SID(p), where

N, N.

SDP= X cDxi (p) fxi + Txi I(p) mi
=1 (3-114)

where the taxi denotes slope values, and the functions 4xi (°), Txi (°) are piecewise

cubic functions with support on [xi-1, x i+1] and satisfying the following conditions:

(x (xi 2) = i1, i2 'x~1 (xi2) = 0 (3-115)

'txi, (xi) = 0 T1''X (Xil) = 8il. i2  (3-116)

Explicit expressions for 'Zxi('), T'i (°) are obtained in Ref. [241. Letting r, fx denote

vectors of mtai, fxi values respectively, then the ID cardinal spline fitting approach

involves the solution of a linear system of the form

Ax = [CXfJ (3-117)

in order tc guarantee the continuity of second derivatives of 'SID(P) at interval

endpoints. The Ax, C, matrices are tridiagonal matrices, entirely dependent on the
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spacing of data points, and in part reflecting the form assumed for boundary conditions
at the endpoints x1, XNx. Note, that tridiagonal systems of linear equations of the form

in (3-117) can be solved by specialized algorithms involving O(Nx) operations ([8]).

Letting Oi denote the i-th column of the matrix O, defined by

0. = A 1 C. (3-118)

then SID (P) can in view of (3-114), (3-117), and (3-118) be expressed as

N,

S1D(P) = Hi(p)fxi
1=1 (3-119)

where

Hxi (P)-4 [Txl (P)... TxNx(P)] Oxi + 'cxi (P) (3-120)

The Hxi(*)'s are referred to as cardinal functions. By following through an
analogous argument to the above for curve fitting along the y coordinate direction
Hyj(O)'s may defined for j =1 . . . Ny. Given Hxi(.)'s and Hyj(*)'s the following 2D

spline approximant s2D (p, 71) may be defined for the originally defined 2D surface
representation problem:

S2D(P, 1) 4,Z Fi, jHxi(p) nyj(1) (3-121)

Note that (3-121) defines a surface representation with the property that derivatives
up to second order in each variable are continuous. Hence, (3-121) may be
differentiated in order to obtain expressions for desired first and second derivatives.

The cardinal spline approach is attractive since in cases when the cardinal
functions and their derivatives can be precomputed, the operation of calculating spline
approximant function and derivative values simply involves the evaluation of
expressions of the form in (3-121). In the case when the distribution of data is uniform
in both variables, convolution filter forms for calculating approximant function and

derivative values at the center of a window can be obtained from (3-121).
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The cardinal spline approach suffers from the disadvantage that the evaluation

of expressions of the form in (3-121) in general requires the summation of all Nx - N,

terms. The B-spline approach avoids this pitfall by assuming finite support basis

functions. The B-spline approach for representing a function of x is based on an

approximant of the form siDB(P) where

N,-1

SjDB(p) Y, x cBxj(p)
i =-2 (3-122)

where Bi(o) denotes a piecewise cubic basis function, twice continuously

differentiable with support on [xi, xi .4]. It should be noted that the representation in
(3-122) requires the definition of knots, x-2 , x-1, xO and XNx+1, XNx+2, XNx+3 exterior to
the approximant representation interval [xl, xN]. The Bi(o) functions can be

computed by recursions specified in Ref. [24].
Next, B-spline basis functions Byj (p) with support on [Yj, Yj+4] for j = -2...

Ny-i may be defined and the B-spline approximant for our original surface

representation problem may be defined as S2DB (P, 71), where

Nx-1 Ny-I

S1DB(P) = Xi, jBxi(p) Byj (1)
i=-2 j=-2 (3-123)

The ctij coefficients in the surface representation (3-123) must be determined by

imposing a total of (Nx+2) * (Ny+2) linear constraints. These constraints can be

defined in a variety of ways; two options include:

• Matching function values defined at (x, y) knots over the enlarged region
[xO, xN, +1] X [Yo, YNy + 1]

° Matching function values defined at (x, y) knots over [xI, XNx] x [Y1,

yNY], setting second partial derivatives with respect to x equal to zero

along x = x1, x = XNx for y E [Y1, YNy], setting second partial derivatives

with respect to y equal to zero along y = Y1, Y = YNy for x e [x1 , XNy], and

finally setting the mixed second partial derivative with respect to x, and

second partial derivative with respect to y equal to zero at the "corner"
points: (xI, Y1), (XN,, YO, (xI, YNy), XNx, YNy).

In either of the above cases, imposing the described constraints results in a system of

linear equations of the form
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L fx o= !y (3-124)

where L contains the constraint function or derivative values, K2x, 92y are banded
matrices that include appropriate function or derivative values associated with x-axis
and y-axis B-spline basis functions, respectively, and a contains the aij values.
Hence, a can be obtained by solving two successive sets of linear systems indicated

by the grouping of terms of the below equation:

a = [Q X1 L](Qy)-I (3-125)

Given the calculation of a in (3-125), the representation (3-123) can be
differentiated in order to obtain expressions for first and second derivative values.
Due to the fact that the Bxi (.)'s and Byj (-)'s have supports spanning four intervals,

the evaluation of the approximant S2DB (P, 11) at most requires the summation of 16
items. Finally, note that in cases when the (xi, yj) data grid is uniform, (3-123) can be
used in conjunction with (3-125) in order to determine convolutional filter forms for
evaluating first and second derivatives of the approximant surface, at the center of the

data window (see Ref. [17]).
The use of an interpolatory spline-based surface representation approach can

be criticized from the perspective of ignoring data uncertainty. Hence, in approach (4),
the use of spline-based surface representations and least-squares optimization is
combined. One example of this approach involving polynomial splines assumes a
surface representation of the form in (3-123). Next, it is assumed that a finer
"measurement" data grid is superimposed on the surface representation grid defined
by the (xi, yj) pairs, which includes those points as well as others. In this context, the
least squares surface fitting problem can be formulated (see Ref. [15]) as the problem

of minimizing

where I 1 12 denotes the squared Frobrenius matrix norm corresponding to the sum of

the squares of matrix elements, and L, ax, ly have analogous interpretations to L,

%,(, f2y in (3-124). The solution of the optimization over a in (3-126), denoted by a
can be expressed as
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= ofE(-r (3-127)

where # denotes the Moore-Penrose pseudo-inverse. The result in (3-127) can be

obtained by solving two successive sets of linear least-squares problems indicated by

the grouping of terms.

A final smoothing spline-based surface representation approach described here

is the nonpolynomial spline under tension approach discussed by Cline in Ref. [26],

and employed to support curvature related calculations in the 3D object recognition

work of Vemuri, Mitche, and Aggarwal in Ref. [27]. Cline's approximant function F (p,

1) is the solution of a variational problem defined minimizing

fN [Fxxyy (p', I')] 2 dp' di-

1 Y

N-l Ny-1

+ y2 E 7 i y 1') - FxydiJ] 2 dp'dr
i=1 j= 1 (3-128)

where

(P ( (xi + I, yj+i) - F(xi, yj+i) - F(xi+ , yj) + F(xi yj))

(xi+ 1- xi) (yj+i - yj) (3-129)

and subject to the constraint:

F(xi- ,yj) - ' j' 2

(3-130)

The S parameter controls the amount of "tension" associated with the resulting

surface representation and the 8xi, 8 yj are associated with representing the size of

data uncertainties. In brief terms, the solution of the above variational problem

involves

The solution of linear equations for Fxx (, ), Fxx (, "), Fy(-, *) values

at grid points, which are coupled with a single nonlinear equation

related to the satisfaction of (3-130), and %kh!-h then allows the

construction of F(., .) values at grid points.
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The use of a 2D Hermite interpolation formula to represent F (p, Ti)

values given the calculated F(., .), Fxxyy (e, "), Fxx (, ), Fyy(0, ")

values at grid points.

The 2D Hermite interpolation-based surface representation mentioned above may

then be differentiated to obtain first and second derivative values at any desired

points.

The above discussion has reviewed four alternative approaches to surface
representation, which can be employed to support curvature, and surface normal

related feature calculation for mine classification. Approach (2), the moving weighted

least-squares surface representation, may be most attractive for use in gridding non-

uniform data sets, which can then be processed using the more computationally

attractive orthogonal polynomial regression or polynomial spline-based surface
representation techniques of approaches (1) or (3) in calculating desired first and
second derivatives. Approach (4), while having the advantage of combining spine-

based surface representation techniques and a least-squares approximation approach,

appears to require very complex, computationally intensive algorithms.

The focus of the preceding development has been on the use of general surface
representation techniques in order to calculate curvature and surface normal related

features, as motivated by differential geometry and the 3D object recognition

literature. In the present discussion, we recognize the fact that mines frequently have

specific forms, i.e., cylindrical or spherical, and show how a more specialized quadric

surface fitting technique introduced in Ref. [30] may be employed to calculate shape-
related features for use in mine classification.

A quadric surface is represented by an implicit function of three spatial

variables of the form

f'if+f.v+d = 0 (3-131)

where f denotes a vector of x, y, z coordinate values, v denotes a constant vector, and

d a scalar constant. In the case of a central quadric, i.e. an ellipsoid or hyperboloid,

(3-131) can be simplified into the form

f*' f*+, = 0 (3-132)
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where

f*= f+c (3-133)

and

c =v
2 (3-134)

d -- I -v KV v]
4 (3-135)

Spheres and cylinders may be represented as special ellipsoidal surfaces. In the
above context, the suggested shape-related features for use in mine classification are
the eigenvalues of (Q7 /y), i.e. X .{2/Y) i = 1, 2, 3. These eigenvalues are invariant

under 3D rotational transformations for the standardized central quadric surface form
obtained by dividing both sides of (3-132) by y.

At this point, the quadric surface fitting approach suggested in Ref. [30] is
described. The fitting process is formulated in terms of ten parameters al ... aio
which are related to Q, v, and d as follows:

al a a5/21--adF2 a2 f2
\a5/f2 a&f 2 a3 (3-136)

(a)

a9 (3-137)

and
d = alo (3-138)

In addition, let

(a,

aio/ (3-139)
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and assuming a collection of 3D data points fij the fitting problem is formulated as the

optimization of E defined as

E=I [f~jQ fi j + fij v + d]2  (3-140)

over the p vector variable, subject to the constraint that

Ilpil = 1 (3-141)

The condition (3-141) guarantees a nontrivial solution to the optimization over E.

To define the solution of the above constrained optimization problem, note that

individual terms in the summation in (3-140) can be expressed as

[fij CIfij+ fi,j j v +d]2 = p'( B ~j q-J j)
C'ij D j/ (3-142)

for appropriately defined matrices Bi j (6 x 6), Cij (6 x 4), Dij (4 x 4). Next, defining

Ba = Yaij (3-143)

Ca = IC"ij (3-144)

Da = YDi j (3-145)

then, from Ref. [30], the optimal p vector partitions, Pt P2 are defined as

PI = eigenvector of (Ba - Ca D -1 Ca) corresponding to (3-146)

the minimum eigenvalue, (Ba - Ca Da1 Ca)

= Dal Ca Pi (3-147)

Finally, note that the minimum value of the optimization criterion E, Emin, can be

expressed as
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Emin = 2Xmin (B.- CaD 1 C (3-148)

The above discussion defines an efficient procedure for the least-squares fitting

of quadric surfaces that avoids the need for the use of nonlinear optimization
techniques. Since Emin indicates the quality of the fit, it is suggested here that (Emin,

Xi (K2/y) i = 1,2,3) be the complete set of quadric surface derived features for use in

mine classification.

4.0 Conclusions
The preceding development has considered a wide variety of features for use in

mine classification, derived from 3D depth map information. These feature calculation
concepts are summarized in Figure (4-1). In the case of low-resolution, telesounder-

derived depth maps, the focus of our discussion was on the use of shadow information

to calculate mine size-related features, motivated by the use of shadows by human
interpreters of side-scan sonar data. In the case of high-resolution, swath-bathymetry

derived depth maps, both stochastic and deterministic depth map model based feature

calculation concepts were identified. The stochastic depth map model based feature
calculation concepts were motivated by the literature on texture measures, and

random field based approaches to image processing. Finally, the deterministic depth
map model based feature calculation concepts were motivated by ideas from

differential geometry and the 3D object recognition/computer vision literature.
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Low-Resolution Depth Map (1) Mine Diameter Estimation Using Side-Scan
Feature Calculation Concepts Sonar and Depth Map Information

P*1 A4- fl % A at~on E~stimates

Feature Calculation Concepts:
(2) Spectral Density-Related Quantities

Stochastic Model-Based
Concepts (3) 2D Autoregressive Model Coefficients

(4) Nom,alized Prediction Error Residuals
Based on Fitted 2D Autoregressive Model

(5) Spatial Grey-Level Difference Texture
Measures

(6) Absolute Grey-Level Difference Texture
Measures

(7) Grey-Level Run Length Texture Measures

(8) Fractal Dimension Estimates

(9) Wavelet Transform-Related Quantities
High-Resolution Depth Map (1) Mean and Gaussian Curvature-Related
Feature Calculation Concepts: Quantities

Deterministic Model-Based (2) Hough-Transform-Related Quantities
Concepts Derived From Surface Normal Information

(3) Discrete Extended Gaussian Image
Derived Quantities Obtained from Surface
Normal and Curvature-Related Information

(4) Quadric Surface Fit-Related Quantities
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